Thursday, September 8, 2016

Techniques for analyzing quantitative data

Techniques for analyzing quantitative data


Techniques for analyzing quantitative data



See also: Problem solving
Author Dr. Jonathan Koomey has recommended a series of best practices for understanding quantitative data. These include:
    Re-perform important calculations, such as verifying columns of data that are formula driven;
  • Confirm main totals are the sum of subtotals;
  • Check relationships between numbers that should be related in a predictable way, such as ratios over time;
  • Normalize numbers to make comparisons easier, such as analyzing amounts per person or relative to GDP or as an index value relative to a base year;
  • Break problems into component parts by analyzing factors that led to the results, such as DuPont analysis of return on equity.[5]
For the variables under examination, analysts typically obtain descriptive statistics for them, such as the mean (average), median, and standard deviation. They may also analyze the distribution of the key variables to see how the individual values cluster around the mean.
Consultants at McKinsey and Company named a technique for breaking a quantitative problem down into its component parts called the MECE principle. Each layer can be broken down into its components; each of the sub-components must be mutually exclusive of each other and collectively add up to the layer above them. The relationship is referred to as "Mutually Exclusive and Collectively Exhaustive" or MECE. For example, profit by definition can be broken down into total revenue and total cost. In turn, total revenue can be analyzed by its components, such as revenue of divisions A, B, and C (which are mutually exclusive of each other) and should add to the total revenue (collectively exhaustive).
Analysts may use robust statistical measurements to solve certain analytical problems. Hypothesis testing is used when a particular hypothesis about the true state of affairs is made by the analyst and data is gathered to determine whether that state of affairs is true or false. For example, the hypothesis might be that "Unemployment has no effect on inflation", which relates to an economics concept called the Phillips Curve. Hypothesis testing involves considering the likelihood of Type I and type II errors, which relate to whether the data supports accepting or rejecting the hypothesis.
Regression analysis may be used when the analyst is trying to determine the extent to which independent variable X affects dependent variable Y (e.g., "To what extent do changes in the unemployment rate (X) affect the inflation rate (Y)?"). This is an attempt to model or fit an equation line or curve to the data, such that Y is a function of X.

Go to link download

download
alternative link download